3.239 \(\int \frac{x^4}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx\)

Optimal. Leaf size=336 \[ \frac{\sqrt [4]{a} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}-\frac{\sqrt [4]{a} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}+\frac{\sqrt [4]{a} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}-\frac{\sqrt [4]{a} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}+\frac{d^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{e} \left (a e^2+c d^2\right )} \]

[Out]

(d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[e]*(c*d^2 + a*e^2)) + (a^(1/4)*(Sqrt
[c]*d - Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*c^(3/4)*(
c*d^2 + a*e^2)) - (a^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x
)/a^(1/4)])/(2*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2)) + (a^(1/4)*(Sqrt[c]*d + Sqrt[a]*
e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*c^(3/4)*(c
*d^2 + a*e^2)) - (a^(1/4)*(Sqrt[c]*d + Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*
c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2))

_______________________________________________________________________________________

Rubi [A]  time = 0.53499, antiderivative size = 336, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364 \[ \frac{\sqrt [4]{a} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}-\frac{\sqrt [4]{a} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}+\frac{\sqrt [4]{a} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}-\frac{\sqrt [4]{a} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} c^{3/4} \left (a e^2+c d^2\right )}+\frac{d^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{e} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[x^4/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[e]*(c*d^2 + a*e^2)) + (a^(1/4)*(Sqrt
[c]*d - Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*c^(3/4)*(
c*d^2 + a*e^2)) - (a^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x
)/a^(1/4)])/(2*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2)) + (a^(1/4)*(Sqrt[c]*d + Sqrt[a]*
e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*c^(3/4)*(c
*d^2 + a*e^2)) - (a^(1/4)*(Sqrt[c]*d + Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*
c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 100.285, size = 304, normalized size = 0.9 \[ - \frac{\sqrt{2} \sqrt [4]{a} \left (\sqrt{a} e - \sqrt{c} d\right ) \operatorname{atan}{\left (1 - \frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}} \right )}}{4 c^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )} + \frac{\sqrt{2} \sqrt [4]{a} \left (\sqrt{a} e - \sqrt{c} d\right ) \operatorname{atan}{\left (1 + \frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}} \right )}}{4 c^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )} + \frac{\sqrt{2} \sqrt [4]{a} \left (\sqrt{a} e + \sqrt{c} d\right ) \log{\left (- \sqrt{2} \sqrt [4]{a} c^{\frac{3}{4}} x + \sqrt{a} \sqrt{c} + c x^{2} \right )}}{8 c^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )} - \frac{\sqrt{2} \sqrt [4]{a} \left (\sqrt{a} e + \sqrt{c} d\right ) \log{\left (\sqrt{2} \sqrt [4]{a} c^{\frac{3}{4}} x + \sqrt{a} \sqrt{c} + c x^{2} \right )}}{8 c^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )} + \frac{d^{\frac{3}{2}} \operatorname{atan}{\left (\frac{\sqrt{e} x}{\sqrt{d}} \right )}}{\sqrt{e} \left (a e^{2} + c d^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4/(e*x**2+d)/(c*x**4+a),x)

[Out]

-sqrt(2)*a**(1/4)*(sqrt(a)*e - sqrt(c)*d)*atan(1 - sqrt(2)*c**(1/4)*x/a**(1/4))/
(4*c**(3/4)*(a*e**2 + c*d**2)) + sqrt(2)*a**(1/4)*(sqrt(a)*e - sqrt(c)*d)*atan(1
 + sqrt(2)*c**(1/4)*x/a**(1/4))/(4*c**(3/4)*(a*e**2 + c*d**2)) + sqrt(2)*a**(1/4
)*(sqrt(a)*e + sqrt(c)*d)*log(-sqrt(2)*a**(1/4)*c**(3/4)*x + sqrt(a)*sqrt(c) + c
*x**2)/(8*c**(3/4)*(a*e**2 + c*d**2)) - sqrt(2)*a**(1/4)*(sqrt(a)*e + sqrt(c)*d)
*log(sqrt(2)*a**(1/4)*c**(3/4)*x + sqrt(a)*sqrt(c) + c*x**2)/(8*c**(3/4)*(a*e**2
 + c*d**2)) + d**(3/2)*atan(sqrt(e)*x/sqrt(d))/(sqrt(e)*(a*e**2 + c*d**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.364328, size = 233, normalized size = 0.69 \[ \frac{\sqrt{2} \sqrt [4]{a} \sqrt{e} \left (\left (\sqrt{a} e+\sqrt{c} d\right ) \left (\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )-\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )\right )+2 \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+\left (2 \sqrt{a} e-2 \sqrt{c} d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )\right )+8 c^{3/4} d^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{8 c^{3/4} \sqrt{e} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]  Integrate[x^4/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(8*c^(3/4)*d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + Sqrt[2]*a^(1/4)*Sqrt[e]*(2*(Sqr
t[c]*d - Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + (-2*Sqrt[c]*d + 2*
Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + (Sqrt[c]*d + Sqrt[a]*e)*(Lo
g[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(
1/4)*c^(1/4)*x + Sqrt[c]*x^2])))/(8*c^(3/4)*Sqrt[e]*(c*d^2 + a*e^2))

_______________________________________________________________________________________

Maple [A]  time = 0.01, size = 363, normalized size = 1.1 \[ -{\frac{d\sqrt{2}}{8\,a{e}^{2}+8\,c{d}^{2}}\sqrt [4]{{\frac{a}{c}}}\ln \left ({1 \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ) }-{\frac{d\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ) }-{\frac{d\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ) }+{\frac{ae\sqrt{2}}{ \left ( 8\,a{e}^{2}+8\,c{d}^{2} \right ) c}\ln \left ({1 \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{ae\sqrt{2}}{ \left ( 4\,a{e}^{2}+4\,c{d}^{2} \right ) c}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{ae\sqrt{2}}{ \left ( 4\,a{e}^{2}+4\,c{d}^{2} \right ) c}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{{d}^{2}}{a{e}^{2}+c{d}^{2}}\arctan \left ({ex{\frac{1}{\sqrt{de}}}} \right ){\frac{1}{\sqrt{de}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4/(e*x^2+d)/(c*x^4+a),x)

[Out]

-1/8/(a*e^2+c*d^2)*d*(1/c*a)^(1/4)*2^(1/2)*ln((x^2+(1/c*a)^(1/4)*x*2^(1/2)+(1/c*
a)^(1/2))/(x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2)))-1/4/(a*e^2+c*d^2)*d*(1/c*
a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x+1)-1/4/(a*e^2+c*d^2)*d*(1/c*a)^(
1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x-1)+1/8*a/(a*e^2+c*d^2)*e/c/(1/c*a)^(
1/4)*2^(1/2)*ln((x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2))/(x^2+(1/c*a)^(1/4)*x
*2^(1/2)+(1/c*a)^(1/2)))+1/4*a/(a*e^2+c*d^2)*e/c/(1/c*a)^(1/4)*2^(1/2)*arctan(2^
(1/2)/(1/c*a)^(1/4)*x+1)+1/4*a/(a*e^2+c*d^2)*e/c/(1/c*a)^(1/4)*2^(1/2)*arctan(2^
(1/2)/(1/c*a)^(1/4)*x-1)+d^2/(a*e^2+c*d^2)/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^4/((c*x^4 + a)*(e*x^2 + d)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.514177, size = 1, normalized size = 0. \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^4/((c*x^4 + a)*(e*x^2 + d)),x, algorithm="fricas")

[Out]

[1/4*((c*d^2 + a*e^2)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sq
rt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c
^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2
*c*e^4))*log(-(c*d^2 - a*e^2)*x + (c^2*d^3 - a*c*d*e^2 + (c^4*d^4*e + 2*a*c^3*d^
2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*
a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a
*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^
2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6
+ a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) - (c*d^2 + a*e^2)*sqr
t((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*
d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^
2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*
e^2)*x - (c^2*d^3 - a*c*d*e^2 + (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt
(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5
*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2
*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4
*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4
 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) + (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c^3*d^4 + 2
*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d
^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c
^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x + (c^2*d^3 - a*c*d
*e^2 - (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^
2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*
e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqr
t(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^
5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*
c*e^4))) - (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^
4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*
a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2
+ a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*d*e^2 - (c^4*d^4*e + 2*a*c
^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8
 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt
((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d
^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2
*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) + 2*d*sqrt(-d/e)
*log((e*x^2 + 2*e*x*sqrt(-d/e) - d)/(e*x^2 + d)))/(c*d^2 + a*e^2), 1/4*(4*d*sqrt
(d/e)*arctan(x/sqrt(d/e)) + (c*d^2 + a*e^2)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d
^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a
*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 +
 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x + (c^2*d^3 - a*c*d*e^2 + (
c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 +
a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^
4*c^3*e^8)))*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^
2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^
4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)))
 - (c*d^2 + a*e^2)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(
-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*
d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*
e^4))*log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*d*e^2 + (c^4*d^4*e + 2*a*c^3*d^2*e
^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c
^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*
e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 +
 a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a
^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) + (c*d^2 + a*e^2)*sqrt((
2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2
*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e
^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2
)*x + (c^2*d^3 - a*c*d*e^2 - (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(
a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^
4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^
2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*
c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 +
2*a*c^2*d^2*e^2 + a^2*c*e^4))) - (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c^3*d^4 + 2*a*
c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8
+ 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*
d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*d*e^
2 - (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e
^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6
 + a^4*c^3*e^8)))*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-
(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d
^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e
^4))))/(c*d^2 + a*e^2)]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4/(e*x**2+d)/(c*x**4+a),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.281036, size = 441, normalized size = 1.31 \[ \frac{d^{\frac{3}{2}} \arctan \left (\frac{x e^{\frac{1}{2}}}{\sqrt{d}}\right ) e^{\left (-\frac{1}{2}\right )}}{c d^{2} + a e^{2}} - \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} c^{4} d^{2} + \sqrt{2} a c^{3} e^{2}\right )}} - \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} c^{4} d^{2} + \sqrt{2} a c^{3} e^{2}\right )}} - \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac{3}{4}} e\right )}{\rm ln}\left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} c^{4} d^{2} + \sqrt{2} a c^{3} e^{2}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac{3}{4}} e\right )}{\rm ln}\left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} c^{4} d^{2} + \sqrt{2} a c^{3} e^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^4/((c*x^4 + a)*(e*x^2 + d)),x, algorithm="giac")

[Out]

d^(3/2)*arctan(x*e^(1/2)/sqrt(d))*e^(-1/2)/(c*d^2 + a*e^2) - 1/2*((a*c^3)^(1/4)*
c^2*d - (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1
/4))/(sqrt(2)*c^4*d^2 + sqrt(2)*a*c^3*e^2) - 1/2*((a*c^3)^(1/4)*c^2*d - (a*c^3)^
(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*c^
4*d^2 + sqrt(2)*a*c^3*e^2) - 1/4*((a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*ln(x^2
+ sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sqrt(2)*c^4*d^2 + sqrt(2)*a*c^3*e^2) + 1/4
*((a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*ln(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a
/c))/(sqrt(2)*c^4*d^2 + sqrt(2)*a*c^3*e^2)